Step of Proof: fast-fib
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
fast-fib
:
.....assertion..... NILNIL
n
,
a
,
b
:
.
{
m
:
|
{
k
:
.
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
latex
by (InductionOnNat)
CollapseTHEN (Auto')
latex
C
1
:
C1:
1.
a
:
C1:
2.
b
:
C1:
{
m
:
|
C1:
{
k
:
.
C1:
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(0+
k
))}
C
2
:
C2:
1.
n
:
C2:
2. 0 <
n
C2:
3.
a
,
b
:
.
C2: 3.
{
m
:
|
C2: 3. {
k
:
.
C2: 3. {
(
a
= fib(
k
))
C2: 3. {
((
k
0)
(
b
= 0))
C2: 3. {
((0 <
k
)
(
b
= fib(
k
- 1)))
C2: 3. {
(
m
= fib((
n
- 1)+
k
))}
C2:
4.
a
:
C2:
5.
b
:
C2:
{
m
:
|
C2:
{
k
:
.
C2:
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
C
.
Definitions
n
-
m
,
n
+
m
,
-
n
,
#$n
,
A
,
False
,
Void
,
i
j
,
{
x
:
A
|
B
(
x
)}
,
a
<
b
,
P
Q
,
x
:
A
B
(
x
)
,
A
B
,
s
=
t
,
,
x
:
A
.
B
(
x
)
,
t
T
,
Lemmas
ge
wf
,
nat
properties
,
nat
wf
origin